УДК 547.216:542.952;661.183.6

ОСОБЕННОСТИ КАТАЛИТИЧЕСКОГО ДЕЙСТВИЯ ЦЕОЛИТОВ ТИПА ЦВМ И Y, СОДЕРЖАЩИХ ПЛАТИНУ, В РЕАКЦИИ ИЗОМЕРИЗАЦИИ Н-ОКТАНА

С.Е.Мирзалиева

Бакинский Государственный Университет AZ 1148 Баку, ул, 3, Халилова, 23: e-mail:mirzaliyeva.s@mail.ru

Изучены особенности каталитического действия среднепористого (0.51-0.55hm) высококремнеземного цеолита типа ЦВМ и широкопористого (0.8-0.9hm) цеолита типа V, содержащих платину, в реакции изомеризации н-октана. Показано, что пористая структура цеолита существенно влияет на состав и распределение продуктов при превращении н-октана. Установлено, что катализатор Pt/НЦВМ обладает более низкой первичной измеризующей, но более высокой вторичной изомеризующей способностью, чем Pt-катализаторы на основе цеолитов типа V. Содержание изомеров C_4 - C_5 , образующихся в результате вторичной реакции на Pt/НЦВМ примерно в Pt раза больше, чем на Pt-катализаторах на основе цеолитов типа Pt. С увеличением кристаллографического размера каналов цеолита в продуктах реакции увеличивается содержание более разветвленных Pt0-катализаторах на основе цеолитов типа Pt1-катализаторах на основе цеолитов типа Pt2-катализаторах на основе цеолитов типа Pt3-катализаторах на основе цеолитов типа Pt4-катализаторах на основе цеолитов типа Pt5-катализаторах на основе цеолитов типа Pt6-катализаторах на основе цеолитов типа Pt6-катализаторах на основе цеолитов типа Pt7-катализаторах на основе цеолитов типа Pt8-катализаторах на основе Pt9-катализаторах на основе Pt9-катализатора

Ключевые слова: цеолиты типа ЦВМ и У, изомеризация, н-октан, гидрокрекинг, катализатор, конверсия.

ВВЕДЕНИЕ

промышленной переработке тяжелых нефтяных фракций с высоким содержанием нормальных парафинов используются процессы с применением бифункциональных катализаторов [1-4]. Химические превращения н-парафинов при этом сводятся к разрыву углеводородной цепи получению более фракций, углеводородных либо К изомеризации с образованием изопарафинов, которые являются ценным компонентом смазочных трансфор-Указанные маторных масел. реакции осуществляются в присутствии бифункциональных катализаторов, имеющих как активные кислотные центры, ускоряющие реакции разрыва И изомеризации углеводородной цепи, так и активные центры, влияющие на реакции гидрирования и дегидрирования. Селективность бифункциональных катализаторов зависит от соотношения их кислотной и гидро-дегидрирующей функции [5-8].

Поиск высокоактивных катализаторов, легко регенерируемых, отвечающих экологическим требованиям и обеспечивающих высокие выходы изоалканов с количеством атома углерода больше шести, является на сегодняшний день актуальной задачей.

Перспективным классом катализаторов, эффективных в реакциях превращения углеводородов являются цеолитные материалы, имеющие средние и крупные поры, наличие которых открывает путь к превращению средних и крупных органических молекул и облегчает транспорт исходных и промежуточных соединений и продуктов реакции.

Целью данной работы было изучение особенностей каталитического действия высококремнеземных цеолитов с размерами окон 0.57·0.51 нм, а также цеолита типа У с размерами окон (0.8-0.9 нм) содержащих Рt в превращении ноктана.

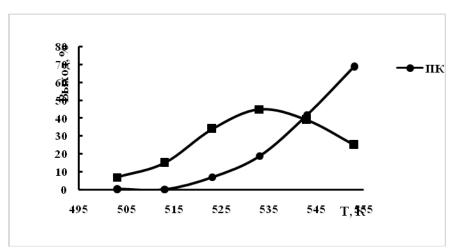
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных образцов были взяты цеолиты типа NaY и ЦВМ. Мольные отношения $SiO_2:Al_2O_3$ в цеолитах NaY и ЦВМ составляли 5.0 и 33.0 соответственно.

Nа-форму цеолитов переводили в декатионированную H-форму методом катионного обмена на NH_4^+ в 1N водном растворе NH_4Cl с последующим прокаливанием при 500^0C в течение 4 ч.

Ультрастабильный цеолит USУ был синтезирован в процессе деалюминиро-

вания декатионированного цеолита У водным раствором $(NH_4)_2SiF_6$ по методике, описанной в [9].


Нанесение на катализаторы 0.5% Pt осуществляли методом пропитки экструдатов раствором [Pt(NH₃)₄]Cl₂ с последующим выпариванием раствора, сушкой при 110^{0} С и прокаливанием при 500^{0} С в течение 4 ч. [8].

Методика проведения опытов и анализ продуктов реакции описаны в [9].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Ha рис.1. показана зависимость выходов изооктанов продуктов гидрокрекинга катализаторе 0.5% на Pt/НЦВМ от температуры. Видно, что изооктанов выход проходит через максимум. Максимальный выхол 533К и изооктанов достигается при

составляет 45.4 мас.%. При температурах выше 533К происходит существенное снижение выхода изомеров и резкое возрастание выхода продуктов гидрокрекинга. При температуре 543К выход продуктов гидрокрекинга составляет более 49.3 мас.%.

Рис. 1. Зависимость выходов изооктанов (■) и продуктов гидрокрекинга (•) на катализаторе 0.5% Pt/HЦВМ от температуры.

Очевидно, это связано с преобладанием у катализатора Pt/HЦВМ сильных кислотных центров, что и определяет высокую селективность в реакциях гидрокрекинга.

В табл. 1 представлены данные о составе продуктов превращения н-октана на Рt-содержащих цеолитах различного структурного типа. Из данных таблицы видно, что структура цеолита существенно

влияет на состав продуктов при превращении н-октана. При одинаковых условиях реакции ($T=533\mathrm{K}$, $p=0.1\mathrm{M}\Pi a$, $H_2/\mathrm{H-C_8}H_{18}=10$) $Pt/\mathrm{H}\mathrm{L}\mathrm{B}\mathrm{M}$ обладает более высокой активностью, чем катализаторы $Pt/\mathrm{H}\mathrm{Y}$ и $Pt/\mathrm{H}\mathrm{U}\mathrm{S}\mathrm{Y}$.

Катализатор $Pt/H\scalebox{H}\scalebox{B$

тогда как на Рt-содержащих катализаторах основе цеолита типа Ү выход продуктов гидрокрекинга составляет всего 18.5-24.6 мас.%. Содержание газа C₂-C₄ на Pt/HЦВМ примерно в 2 раза больше, чем на катализаторах на основе цеолита типа Ү. Катализатор Pt/HЦВМ обладает более низкой первичной изомеризующей способностью. Ha катализаторе ЭТОМ содержание продуктах изооктанов В реакции составляет 41.7 мас.%. Катализаторы на основе цеолита типа У проявляют более высокую первичную изомеризующую активность. На этих катализаторах содержание изооктанов в продуктах реакции составляет 74.4-80.4 мас.%. Однако катализатор Pt/HЦВМ обладает более высокой вторичной изомеризующей способностью. На этом катализаторе содержание изомеров С₄-С₅, образующихся в результате вторичной реакции, примерно в 2 раза больше, чем на катализаторах на основе цеолита типа Ү.

Табл.1. Состав продуктов превращения н-октана на Рt-содержащих цеолитах различного

структурного типа. (Условия: T=533K, p=0.1 МПа, $H_2/C_8H_{18}=10$)

структурного типа. (Условия. 1–353	π, p=0.1 wi11a, 11 ₂ /C					
Продукты реакции, масс.%		Катализатор				
	Pt/НЦВМ	Pt/HY	Pt/HUSY			
C_2	0.2	-	-			
C_3	15.9	7.3	4.5			
i-C ₄	15.8	8.1	7.9			
n-C ₄	11.3	4.8	3.6			
i-C ₅	9.3	4.4	2.9			
n-C ₅	4.7	0.9	0.6			
i-C ₆	0.05	0.01	0.01			
n-C ₆	0.05	0.02	0.04			
i-C ₇	0.04	0.01	0.01			
n-C ₇	0.02	0.06	0.04			
2-MC ₇	13.3	20.5	19.6			
3-MC ₇	13.6	24.4	23.2			
4-MC ₇	4.9	10.7	10.9			
3-9C ₆	1.8	4.9	5.8			
2,2 ДМС ₆	0.8	1.6	2.9			
2,3ДМС ₆	1.4	2.2	3.3			
2,4 ДМС ₆	2.6	4.3	5.9			
3,3 ДМС ₆	0.4	1.1	2.0			
2,5 ДМС ₆	2.0	2.6	3.8			
3-7, 2-MC ₅	0.2	0.3	0.5			
3,4ДМС ₆	0.7	1.8	2.5			
Конверсия,%	56.5	46.0	48.2			

Например, на катализаторе $Pt/H\scalebox{HIBM}$ содержание изо- C_4 - C_5 составляет 25.1 против 10.8-12.5 мас.% на катализаторах на основе цеолита типа Y. Содержание изо- C_6 - C_7 на катализаторе $Pt/H\scalebox{LIBM}$ также больше,

чем на катализаторах на основе цеолита типа Y.

В табл.2 показано распределение монозамещенных изомеров в продуктах реакции при превращении н-октана на Pt-

содержащих катализаторах отличающихся структурным типом. Видно, что содержание 3-метилгептана в присутствии всех катализаторов примерно одинаково и составляет 39.0-40.6 мас.%. Однако содержание 4-метилгептана и особенно 3-этилгексана на Pt-содержащих катализа-

торах на основе цеолита типа Y существенно выше, чем на катализаторе Pt/HЦВМ. Содержание 3-этилгексана на катализаторах на основе цеолита типа Y в 1.8 раза больше чем на катализаторе Pt/HЦВМ.

Табл.2. Распределение монозамещенных изомеров октана в продуктах реакции превращения н-октана

Монозамещенные изомеры	Катализатор			
октана	Pt/НЦВМ	Pt/HY	Pt/HUSY	
2M-C ₇	39.6	33.9	32.9	
3M-C ₇	40.6	40.3	39.0	
4M-C ₇	14.5	17.7	18.3	
3-E-C ₆	5.3	8.1	9.8	
Содержание	33.6	60.5	59.5	
монозамещенных изомеров				
C_8 в продуктах реакции,%				

В табл. 3 представлены данные о распределении дитризамещенных И Видно, изомеров октана. что на катализаторах на основе цеолита типа Ү общее содержание ди- и тризамещенных изомеров в 1.7-2.5 раза больше, чем на катализаторе Pt/HЦВМ. Содержание наиболее разветвленных изомеров 2.2 ДМС₆ и 3.3 ДМС₆ диаметр 0.65 нм. которых больше диаметра каналов пентасила (0.51-0.53 нм) на $Pt/H\scale$ Миже, чем на Pt-содержащих катализаторах на основе цеолита типа Y с диаметром пор 0.8-0.9 нм. Например, если на $Pt/H\scale$ В составе дизамещенных изомеров составляет 9.9 и 4.9 мас.% соответственно, то на $Pt/H\scale$ Соответственно.

Табл.3. Распределение ди- и тризамещенных изомеров октана в продуктах превращения н-октана

Ди и тризамещенные	Катализатор			
изомеры, масс.%	Pt/HЦВМ	Pt/HY	Pt/HUSY	
2.2 ДМС ₆	9.9	11.5	13.9	
2.3ДMC ₆	17.2	15.8	15.8	
2.4ДMC ₆	32.0	30.9	28.2	
2.5ДMC ₆	24.8	18.7	18.2	
3.3ДMC ₆	4.9	7.9	9.5	
3.4ДMC ₆	8.6	12.9	12.0	
3E, 2-MC ₆	2.5	2.2	2.4	
Содержание ди- и	8.1	13.9	20.9	
тризамещенных изомеров				
C_8 в продуктах реакции,%				

Таким образом, структура цеолита существенно влияет на выход и распределение изомеров н-парафинового углеводорода. На катализаторе на основе среднепористого цеолита типа ЦВМ с высокой скоростью протекают реакции

гидрокрекинга И изомеризации. Содержание гидрокрекинга продуктов заметно больше содержания изомеров С₈. Однако катализатор Pt/HЦВМ обладает вторичной изомеризующей высокой способностью. Содержание изомеров с числом атомов углерода меньше восьми на этом катализаторе существенно выше, чем на широкопористых цеолитах типа Ү. С увеличением кристаллографического размера каналов цеолита в продуктах реакции увеличивается содержание более разветвленных дизамещенных изомеров C_8 . Образование дизамещенных изомеров C_8 в среднепористом цеолите ЦВМ стерически затруднено. Рt-содержащие катализаторы на основе цеолита типа Y обладают высокой первичной изомеризующей способностью.

REFERENCES

- 1. Vasil'ev A.N., Galich P.N. Isomerization of n-paraffin hydrocarbons on zeolite catalysts. Химия и технология топлив и масел. *Himija i tehnologija topliv i masel Industrial Chemistry and Chemical Engineering*. 1996, no. 4, pp.44-48.
- 1. Dauns H., Wietcamp T. Isomerization of n-paraffevic hydrocarbons over zeolitic catalysts. *Chem. Ind. Techn.*, 1986, v. 58, no. 11, pp. 900-902.
- 2. Joeri F.M. Denayer, B. De Jonckheer, M. Hloch, G.B. Marin. at al. Molecular Competition of C₇ and C₉ n-alkanes in Vapor- and Liquid-Plase Hidroconversion over bifunctionnal Pt-USY zeolite catalysts. *Journal of Catalysis*. 2002, vol. 210, pp. 445-452.
- 3. Weitkamp J., Jakobs P. A., Martens J.A. Izomerization and hydrocraking of C₉ through C₁₆ n-alkanes on Pt/HZSM-5 zeolite. *Appl.Catal.* 1983, vol. 8, no. 1, pp. 123-129.
- 4. De Lucas A., Valverde J. L., Sanches P. Hydroisomerization of n-octane over platinum

- catalysts with or without binder. *Appl. Catalysis*, 2005, vol. 282, pp. 15-24.
- 5. Yoshio Ono. A survey of the mechanism in catalytic isomerization of alkanes. *Catalysis Today.* 2003,vol. 81, pp. 3-16.
- 6. Zhang W., Panagiotis G. Effect of Zeolite Structure and Acidity on the Product Selectivity and Reaction Mechanism for *n*-Octane Hydroisomerization and Hydrocracking. *Journal of Catalysis*.1999,V. 182, pp. 400–416.
- 7. Mamedova A.Z., S.E.Mirzaliyeva, E.I.Akhmedov, S.E.Mamedov. N-Octane Isomerization over Bicationic Platinum-Containing Zeolites of Y- Type. JECET; March 2016; Sec.A; vol.5, no.2, pp.104-107.
- 8. Mammadova A.Z., Mirzaliyaeva S.E., Akhmadov E.I., Mammadov S.E. İsomerization of n-heptane on modified Pt zeolite catalysts. *Kimya Problemləri Chemical Problems*. 2016, no.2, pp.175-179. (In Azerbaycan).

FEATURES OF CATALYTIC EFFECT OF PLATINUM-CONTAINING ZEOLITES OF ZSM AND Y-TYPE IN THE n-OCTANE ISOMERIZATION REACTION

S.E.Mirzaliyeva

Baku State University

23, Z.Xalilov str., AZ 1148 Baku, Azerbaijan Republic: e-mail: mirzaliyeva.s@mail.ru

The catalytic effect of mesoporous (0,51-0,55nm) ZSM-type of high-silica and broadporous (0,8-0,9nm) and platinum-containing Y type zeolites have been analysed in the isomerization reaction of n-octane. It revealed that the porous structure of zeolites has a great influence on the composition and distribution of products in the course of n-octane transformation. It found that Pt/HZSM catalyst has a lower primary isomerising and concurrently higher secondary

isomerising capability than Pt-catalysts on the basis of Y type zeolites. The content of C_4 - C_5 isomers obtained from the secondary reaction on Pt/HZSM proved to be more than twice from Pt-catalysts on the basis of Y type zeolites. As crystallographic size of zeolite channels in the products of the reaction rises, so does the content of increasingly branched di- and trisubstituted C_8 isomers. Note that the content of di- and tri-substituted C_8 isomers on Pt-catalysts on the basis of Y type zeolites turned out 1.7-2.5 times higher than that on Pt/HZSM catalyst.

Keywords: ZSM and Y type zeolites, isomerisation, n-octane, hydrocracking, catalyst, conversion

n-OKTANIN İZOMERLƏŞMƏSİ REAKSİYASINDA Pt-TƏRKİBLİ YÜKSƏK SİLİSİUMLU ZSM VƏ Y NÖVLÜ SEOLİTLƏRİN KATALİTİK TƏSİRİNİN XÜSUSİYYƏTLƏRİ

S.E. Mirzəliyeva

Bakı Dövlət Universiteti AZ 1148 Bakı, Z.Xəlilov küç.,23; e-mail: mirzaliyeva.s@mail.ru

Pt tərkibli orta məsaməli (0.51-0.55nm) yüksək silisiumlu və genişməsaməli (0.8-0.9nm) Y növlü seolitlərin n-oktanın izomerləşmə reaksiyasında katalitik təsirinin xüsusiyyətləri öyrənilmiş və göstərilmişdir ki, seolitin məsaməli quruluşu n-oktanın çevrilməsində məhsulların tərkibinə və paylanmasına təsir edir. Müəyyən olunmuşdur ki, Y seolitindən fərqli olaraq Pt/HЦВМ katalizatorunun ilkin izomerləşdirici qabliyyəti aşağı olur, lakin hidrokrekinq məhsullarının izomerləşməsində daha yüksək aktivlik göstərir. Onun iştirakında reaksiyanın nəticəsində əmələ gələn C_4 - C_5 izomerlərin miqdarı Y seoliti əsasında olan katalizatorlar ilə müqayisədə iki dəfə yüksək olur. Seolitin kanallarının kristalloqrafik ölçülərinin artması ilə reaksiya məhsullarında oktanın daha çox şaxələnən iki- və üç əvəz olunmuş izomerlərinin miqdarı artır. Y növlü Pt seolit katalizatorunun iştirakında oktanın iki- və üç əvəz olunmuş izomerlərin miqdarı Pt/HIЦВМ katalizatoru ilə müqayisədə 1.7-2.5 dəfə çox olur.

Açar sözlər: ZSM və Y növlü seolitlər, izomerləşmə,hidrokrekinq, n-oktan, katalizator, konversiya.

Поступила в редакцию 16.04.2017.